3.1174 \(\int \frac{\cot ^4(c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx\)

Optimal. Leaf size=353 \[ \frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{\left (16 a^2+5 b^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} F\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{24 a^2 d \sqrt{a+b \sin (c+d x)}}+\frac{\left (32 a^2-15 b^2\right ) \sqrt{a+b \sin (c+d x)} E\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{24 a^3 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}+\frac{b \left (12 a^2-5 b^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{8 a^3 d \sqrt{a+b \sin (c+d x)}}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d} \]

[Out]

((32*a^2 - 15*b^2)*Cot[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(24*a^3*d) + (5*b*Cot[c + d*x]*Csc[c + d*x]*Sqrt[a +
 b*Sin[c + d*x]])/(12*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]])/(3*a*d) + ((32*a^2 - 15*
b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(24*a^3*d*Sqrt[(a + b*Sin[c + d*x]
)/(a + b)]) + ((16*a^2 + 5*b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)
])/(24*a^2*d*Sqrt[a + b*Sin[c + d*x]]) + (b*(12*a^2 - 5*b^2)*EllipticPi[2, (c - Pi/2 + d*x)/2, (2*b)/(a + b)]*
Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(8*a^3*d*Sqrt[a + b*Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.881176, antiderivative size = 353, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.435, Rules used = {2725, 3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{\left (16 a^2+5 b^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} F\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{24 a^2 d \sqrt{a+b \sin (c+d x)}}+\frac{\left (32 a^2-15 b^2\right ) \sqrt{a+b \sin (c+d x)} E\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{24 a^3 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}+\frac{b \left (12 a^2-5 b^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )|\frac{2 b}{a+b}\right )}{8 a^3 d \sqrt{a+b \sin (c+d x)}}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^4/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

((32*a^2 - 15*b^2)*Cot[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(24*a^3*d) + (5*b*Cot[c + d*x]*Csc[c + d*x]*Sqrt[a +
 b*Sin[c + d*x]])/(12*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]])/(3*a*d) + ((32*a^2 - 15*
b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(24*a^3*d*Sqrt[(a + b*Sin[c + d*x]
)/(a + b)]) + ((16*a^2 + 5*b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)
])/(24*a^2*d*Sqrt[a + b*Sin[c + d*x]]) + (b*(12*a^2 - 5*b^2)*EllipticPi[2, (c - Pi/2 + d*x)/2, (2*b)/(a + b)]*
Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(8*a^3*d*Sqrt[a + b*Sin[c + d*x]])

Rule 2725

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> -Simp[(Cos[e + f*x]*(a
 + b*Sin[e + f*x])^(m + 1))/(3*a*f*Sin[e + f*x]^3), x] + (-Dist[1/(6*a^2), Int[((a + b*Sin[e + f*x])^m*Simp[8*
a^2 - b^2*(m - 1)*(m - 2) + a*b*m*Sin[e + f*x] - (6*a^2 - b^2*m*(m - 2))*Sin[e + f*x]^2, x])/Sin[e + f*x]^2, x
], x] - Simp[(b*(m - 2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(6*a^2*f*Sin[e + f*x]^2), x]) /; FreeQ[{a,
b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1] && IntegerQ[2*m]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\cot ^4(c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx &=\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d}-\frac{\int \frac{\csc ^2(c+d x) \left (\frac{1}{4} \left (32 a^2-15 b^2\right )-\frac{1}{2} a b \sin (c+d x)-\frac{1}{4} \left (24 a^2-5 b^2\right ) \sin ^2(c+d x)\right )}{\sqrt{a+b \sin (c+d x)}} \, dx}{6 a^2}\\ &=\frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d}-\frac{\int \frac{\csc (c+d x) \left (-\frac{3}{8} b \left (12 a^2-5 b^2\right )-\frac{1}{4} a \left (24 a^2-5 b^2\right ) \sin (c+d x)-\frac{1}{8} b \left (32 a^2-15 b^2\right ) \sin ^2(c+d x)\right )}{\sqrt{a+b \sin (c+d x)}} \, dx}{6 a^3}\\ &=\frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d}+\frac{\int \frac{\csc (c+d x) \left (\frac{3}{8} b^2 \left (12 a^2-5 b^2\right )+\frac{1}{8} a b \left (16 a^2+5 b^2\right ) \sin (c+d x)\right )}{\sqrt{a+b \sin (c+d x)}} \, dx}{6 a^3 b}-\frac{\left (-32 a^2+15 b^2\right ) \int \sqrt{a+b \sin (c+d x)} \, dx}{48 a^3}\\ &=\frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d}+\frac{\left (b \left (12 a^2-5 b^2\right )\right ) \int \frac{\csc (c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx}{16 a^3}+\frac{1}{48} \left (16+\frac{5 b^2}{a^2}\right ) \int \frac{1}{\sqrt{a+b \sin (c+d x)}} \, dx-\frac{\left (\left (-32 a^2+15 b^2\right ) \sqrt{a+b \sin (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \sin (c+d x)}{a+b}} \, dx}{48 a^3 \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}\\ &=\frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d}+\frac{\left (32 a^2-15 b^2\right ) E\left (\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )|\frac{2 b}{a+b}\right ) \sqrt{a+b \sin (c+d x)}}{24 a^3 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}+\frac{\left (b \left (12 a^2-5 b^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}}\right ) \int \frac{\csc (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \sin (c+d x)}{a+b}}} \, dx}{16 a^3 \sqrt{a+b \sin (c+d x)}}+\frac{\left (\left (16+\frac{5 b^2}{a^2}\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \sin (c+d x)}{a+b}}} \, dx}{48 \sqrt{a+b \sin (c+d x)}}\\ &=\frac{\left (32 a^2-15 b^2\right ) \cot (c+d x) \sqrt{a+b \sin (c+d x)}}{24 a^3 d}+\frac{5 b \cot (c+d x) \csc (c+d x) \sqrt{a+b \sin (c+d x)}}{12 a^2 d}-\frac{\cot (c+d x) \csc ^2(c+d x) \sqrt{a+b \sin (c+d x)}}{3 a d}+\frac{\left (32 a^2-15 b^2\right ) E\left (\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )|\frac{2 b}{a+b}\right ) \sqrt{a+b \sin (c+d x)}}{24 a^3 d \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}+\frac{\left (16+\frac{5 b^2}{a^2}\right ) F\left (\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )|\frac{2 b}{a+b}\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}{24 d \sqrt{a+b \sin (c+d x)}}+\frac{b \left (12 a^2-5 b^2\right ) \Pi \left (2;\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )|\frac{2 b}{a+b}\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}}}{8 a^3 d \sqrt{a+b \sin (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 5.46111, size = 475, normalized size = 1.35 \[ \frac{-\frac{4 \cot (c+d x) \sqrt{a+b \sin (c+d x)} \left (8 a^2 \csc ^2(c+d x)-32 a^2-10 a b \csc (c+d x)+15 b^2\right )}{a^3}+\frac{-\frac{8 a \left (24 a^2-5 b^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} F\left (\frac{1}{4} (-2 c-2 d x+\pi )|\frac{2 b}{a+b}\right )}{\sqrt{a+b \sin (c+d x)}}+\frac{2 b \left (45 b^2-104 a^2\right ) \sqrt{\frac{a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac{1}{4} (-2 c-2 d x+\pi )|\frac{2 b}{a+b}\right )}{\sqrt{a+b \sin (c+d x)}}+\frac{2 i \left (32 a^2-15 b^2\right ) \cos (2 (c+d x)) \csc ^2(c+d x) \sec (c+d x) \sqrt{-\frac{b (\sin (c+d x)-1)}{a+b}} \sqrt{-\frac{b (\sin (c+d x)+1)}{a-b}} \left (2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \sin (c+d x)}\right )|\frac{a+b}{a-b}\right )+b \left (2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \sin (c+d x)}\right )|\frac{a+b}{a-b}\right )-b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \sin (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )\right )}{a b \sqrt{-\frac{1}{a+b}} \left (\csc ^2(c+d x)-2\right )}}{a^3}}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^4/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

((-4*Cot[c + d*x]*(-32*a^2 + 15*b^2 - 10*a*b*Csc[c + d*x] + 8*a^2*Csc[c + d*x]^2)*Sqrt[a + b*Sin[c + d*x]])/a^
3 + (((2*I)*(32*a^2 - 15*b^2)*Cos[2*(c + d*x)]*Csc[c + d*x]^2*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(
-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*S
in[c + d*x]]], (a + b)/(a - b)] - b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x
]]], (a + b)/(a - b)]))*Sec[c + d*x]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Sin[c + d*x]))/(a
 - b))])/(a*b*Sqrt[-(a + b)^(-1)]*(-2 + Csc[c + d*x]^2)) - (8*a*(24*a^2 - 5*b^2)*EllipticF[(-2*c + Pi - 2*d*x)
/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] + (2*b*(-104*a^2 + 45*b^2)*Ell
ipticPi[2, (-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]])
/a^3)/(96*d)

________________________________________________________________________________________

Maple [B]  time = 1.951, size = 1496, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x)

[Out]

1/24*(48*a^5*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*El
lipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*sin(d*x+c)^3-16*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(
sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(
a+b))^(1/2))*a^4*b*sin(d*x+c)^3-42*b^2*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin
(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*sin(d*x+c)^3-5*b^3*(
(a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*
sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)^3+15*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)
-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2
))*a*b^4*sin(d*x+c)^3-32*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-
b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5*sin(d*x+c)^3+47*((a+b*sin(d*x+c))/
(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b)
)^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^2*sin(d*x+c)^3-15*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^
(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4*sin(
d*x+c)^3-36*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ell
ipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*a^3*b^2*sin(d*x+c)^3+36*((a+b*sin(d*x+c))/
(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticPi(((a+b*sin(d*x+c))/(a-b
))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*a^2*b^3*sin(d*x+c)^3+15*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*
b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))
^(1/2))*a*b^4*sin(d*x+c)^3-15*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*
b/(a-b))^(1/2)*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*b^5*sin(d*x+c)^3-32*a^3*
b^2*sin(d*x+c)^5+15*a*b^4*sin(d*x+c)^5-32*a^4*b*sin(d*x+c)^4+5*a^2*b^3*sin(d*x+c)^4+30*a^3*b^2*sin(d*x+c)^3-15
*a*b^4*sin(d*x+c)^3+40*a^4*b*sin(d*x+c)^2-5*a^2*b^3*sin(d*x+c)^2+2*a^3*b^2*sin(d*x+c)-8*a^4*b)/a^4/sin(d*x+c)^
3/b/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{4}{\left (c + d x \right )}}{\sqrt{a + b \sin{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**4/(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(cot(c + d*x)**4/sqrt(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (d x + c\right )^{4}}{\sqrt{b \sin \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)^4/sqrt(b*sin(d*x + c) + a), x)